
Stability of Parisi's solution of a spin glass model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 1337

(http://iopscience.iop.org/0305-4470/16/6/027)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 17:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math. Gen. 16 (1983) 1337-1343. Printed in Great Britain 

Stability of Parisi’s solution of‘ a spin glass model 

A V Goltsev 
A F IoSe Physical-Technical Institute Academy of Sciences of the USSR, Leningrad 
194021, USSR 

Received 8 June 1982 

Abstract. The condition of stability of Parisi’s solution of the infinite-range spin glass 
model is obtained and examined near the transition temperature. The matrix of second 
derivatives a2F/aQmo aO,, has non-negative eigenvalues only. There are two continuous 
branches of the eigenvalues and zero is an accumulation point of the eigenvalues. 

1. Introduction 

The problem of formulating a convincing mean-field theory of spin glasses has attracted 
much interest in recent years. Sherrington and Kirkpatrick (1975, 1978, hereafter 
referred to as SKI have proposed 8 model of a spin glass which apparently allows an 
exact solution. Interest in this model started with the physical idea that its solution 
is of a mean-field type. The Hamiltonian of the SK model of Ising spin glass is 

H = - JjjSjSj 

for A‘ Ising spin S,. ‘The bond interactions J?, aretaken as independent random variables 
with a mean value J o  = 0 and of variance J /dN.  In the following, the energy unit is 
fixed by the choice J = 1. By using the replica trick, Sherrington and Kirkpatrisk 
(1975, 1978) expressed the free energy per spin in the form 

where the indices a , p  run from 1 to n and the trace is over the 2” values of the 
sn = *l, The maximum is taken over all possible matrices Qap. SK presented the 
solution which preserves replica symmetry: Qap = q. Unfortunately the SK solution 
suffers from a number of defects. First, the entropy becomes negative at sufficiently 
low temperatures. Second, de Almeida and Thouless (1978, referred to as AT) found 
that the matrix a2F/aQas JQ,, has a negative eigenvalue. This is interpre?ed by . 4 ~  

a5 an instability, which may break the replica symmetry for T < T, (T ,  = 1). To remove 
these defects Blandin (1978) and Bray and Moore (1978, 1979) have presented several 
schemes for breaking the the replica symmetry. Another replica-breaking scheme 
has been proposed by Parisi (1979a, b, 1980a, b, c). In  Parisi’s scheme, the order 
parameter at a given temperature is a function q ( x ) ,  0 < x < 1, which is expected to 
be continuous and monotonically non-decreasing. The function q ( x )  can be found by 
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maximising an effective free energy F which functionally depends on q(x) :  

F = max F[q]. (1.3) 
< , l , l  

Study of the stability of Parisi’s solution was begun by Thouless er a l  (1980). They 
considered the quadratic terms in the variation of the free energy and obtained that 
the operator K defined on L2(0 ,  1) by 

F[q, + s q ]  = ~ [ q ~ ]  + 1 ’ dx 1 * dx’ ~ ( x ,  x’) sq(x)  s(x’) + 0[(ql3] (1.4) 
0 0 

where qo(x) maximises equation (1,3), has zero as the accumulation point for its 
negative eigenvalues. 

To examine the question of the stability of Parisi’s solution we shall consider the 
matrix Mnp,yL defined by 

F[QtL +Ra0l=F[Q?Ll+ 1 1 Ra&ap,yuRyp +O(R’) (1.5) 

where Qf, is the stationary point used by Parisi (1979b, 1980a, b) and the functional 
F[Q,,] is equal to the expression in square brackets in equation (1.2). This quadratic 
form should be positive definite for a stable solution of the problem. It may be 
interesting to note that the quadratic form defined by equation i 1.4) should be negative 
definite at the same time. In Q 2 we calculate some of the eigenvalues of the matrix 

and obtain the condition for stability of Parisi’s solution. This condition is 
analysed for T close to T,  in the condensed phase ($  3). 

a < B  y < v  

2. The condition for stability of Parisi’s solution 

Parisi (1979b) suggested the following parametrisation of the matrix Qa0 

where the m, are integers such that m , + l / m ,  is an integer ii = 0, k) with mo = 1 and 
mk+l = n ;  I ( x )  is an integer-valued function: its value is the smallest integer greater 
than or equal to x. The matrix Qnp depends on k + 1 real parameters ( m ! ) .  If n is 
not a positive integer, there is no reason to have integer m , ;  in the most interesting 
case, they satisfy (for n = 0) the inequalities 

The function q(x)  is defined by 

qix)  = q ,  for m , > ~ > m , + ~  ( i = O , k ) .  (2.2) 

For Parisi‘s parametrisation of the matrix Qap, after some algebra we can write the 
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where 4, = q l  -q,+l, qk+l = 0; 1:'' is a set of integers a which satisfy the inequality 
( i  - l)m, <a < im, and L, is a set of a pair (ap)  for which Quo = 4,. The correlation 
function 

K a p Y v  (SSpS$s,) ( a Z p Z Y f V )  (2.4) 
is symmetric under permutation of the indices a ,  p, y, v. The parametrisation of the 
matrix Qap given by equation (2.1) yields the following useful property of the Kapyv  

K a p y v  = Ka pry if ~ , ~ ' E I Y '  B, P I E  I? 

y ,  y ' E  IF' v, v' E I y  (2.5) 

( a  z p  # y # v, a ' # P ' #  y ' #  v') 

where the integer numbers a ,  6,  c and d are arbitrary. Next we consider the vectors 
R?; ( j  = 0, k )  which satisfy the conditions 

( 2 . 6 ~ )  

1 R;A=O for all p = 1, n and a = 1, n / m l .  (2 .6b)  

By using the property of equation (2.5) it may be proved exactly that the vectors 
R?; are the eigenvectors of the matrix Map.yL associated with the quadratic form 
(equation (2.3)) 

a l # p ) € I :  

where 

Kl = K o @ y v  for a ,  y E I;" p, L ' E I ; 7  ( 2 . 8 )  
and the integer numbers a ,  b = 1, n/ml  satlsfy the condition (ab), ( y v )  E L,. 

For the SK solution which preserves replica symmetry, eigenvalues A, are equal 
to the eigenvalue A ,  of the replicon eigenvectors. The n (n - 3 ) / 2 -  dimensional subspace 
of the entire n ( n  - 1)/2-dimensional space which is spanned by the replicon eigenvec- 
tors is the so-called 'replicon subspace' (Bray and Moore 1979). 

Let us return to Parisi's solution. We also term the eigenvector which gives rise 
to the eigenvalue A,, the 'replicon eigenvector' (see equation (2.7)). There are n other 
eigenvectors ( n  -- 1 'anomalous' eigenvectors and one 'breathing' eigenvector). 
Unfortunately, we can only calculate these eigenvalues for T close to T,. For n = 0 
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and k +CO the eigenvalues Ar,  form the ‘replicon’ branch 

A,(x 1 =; p4[q( 1) - $( 1 - r2) - %(x)] 

where the function K ( x )  is defined by 

K ( x ) = K ,  if m, > x  >m,+ l .  

(2.9) 

(2.10) 

The function K ( x  ! is expected to be continuous and monotonically non-decreasing: 

m a x K ( x ) = K ( l )  min K ( x )  = K ( 0 ) .  (2.11) 

The condition that the  eigenvalues given by equation (2.91 are positive can be written 
in the form 

T z  3 1 - 2 q ( l )  + K (1). (2.12) 

For the SK solution the stability condition (2.12) coincides with the one obtained 

Our aim is to compute the right-hand side of the inequality (2.12). Introducing a 
by AT. 

quantity 

G = Tr exp( ;p2 1 QapSuSB +I hasQ) (2.13) 
a., a 

where the indices a ,  /3 run from 1 to n we write for zero magnetic field 

(2.146) 

By using the method proposed by Duplantier (1981) we obtain 

1 -2q( l )  t K ( l ) = A ( O , O )  (2.15) 

where the function A(x,  h ) satisfies the following differential equation 

5 
-A(x, h )  = --ip2- dq(x) < A ( x ,  h ) + A ( x ,  h)f(x, h )  
ax dx ah 

with the boundary condition 

A ( 1 ,  h )  = 2 sech’ h. 

The function f(x, h 1 satisfies the equation obtained by Parisi (1980b): 

(2.16) 

(2.17) 

f(1, h )  = ln(2 cosh h ) .  
Equation (2.15) is correct as it stands only if q(0)  = 0, otherwise we would have 

(2.18) 

where H is a magnetic field. Use of equations (2.16)-(2.18) for the SK solution yields 
the AT result. 



Stability of Parisi’s solutioti 1341 

3. Stability of Parisi’s solution near T,  

Let us consider the stability of Parisi’s solution for T close to T,  in zero magnetic 
field. The free energy (equation (1.2)) takes the form (Pytte and Rudnick 1979) 

(3.1) 

where sums over the replica indices are unrestricted except that Qap = 0 for U = p. 
The free energy (equation (3.1)) may be written as a functional of q (x )  (Thouless et 
a1 1980). The function q ( x )  which maximises equation (3.1) has the form 

q( i )  = + T 2  + okT3) ( 3 . 2 b )  

where T = 1 - T/Tc.  Use of equations (2.4) and (2.8) gives 

K ( x )  = q2(1) + 2q *(X ) + o(q3). 

A r ( x )  = p4[q(l) -;cl- T 2 )  - t q 2 ( l )  -q2(x)+0(q3)]. 

(3.3) 

Hence 

(3.4) 
Substituting equations (3.2) and (3.3) in equation (3.4) we obtain at second order 
in r 

A,(1) = 0. (3.5) 

The eigenvalues A,(x j are non-negative and the stability condition (2.12) is satisfied 
to this order. It may be interesting to note that for the SK solution the inequality 
(2.12) is violated by the terms of order T ~ .  Unfortunately we do not know whether 
the inequality (2.12) is satisfied at the third and all higher orders in T. 

Parisi (1980a, c) has taken a simpler form for the quartic terms in equation (3.1), 
so that he has 

Substituting equation (3.6) in equation (1.5), for Parisi’s parametrisation of the matrix 
Qap one finds that the quadratic form defined by equation (1.5) has the form 

c c R a & a P , Y l R Y v  
a c p  y < Y  

(3.7) 

The eigenvalues of the matrix Mag,yy may be found from the eigenvalue equation 

det[A&.& - M a p . y u I  = 0.  (3.8) 
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Using the identity 

det-“2[AS,,.S,, -Mop,vv] 

(3.9) 

and calculating the integral in the right-hand side of this identity by means of the 
Hubbard-Stratonovich transformation, one obtains 

det[A6,JBL -Map y i  3 
k 

= (9 ( A  -A , , )  n m, I - m, ) / 2 (  1 - D, ( A  1) n ( m -  -VI;?*, 1 ) i l -Dk+i(A))  (3.10) 

where 

A,, =q0-7-q; ( j = O , k )  (3.11) 

(3.126) 

From equations (3.8) and (3.10) we have that there are k + 1 eigenvalues Ar,, ( j  = 0, k). 
Using equation (3.7) one can prove that the eigenvector which satisfies equation (2.6) 
gives rise to the eigenvalue A,,. There are k + 2 eigenvalues (i = 0, k + 1 ) given by the 
equations 

D,V.,i = 0 ( j  = 0, k + 1 (3.13) 

where D, ( A )  is determined by equations (3.12). 
If the replica symmetry is restored, the eigenvalues A,, and A,, are given hy 

(3.14a) 

13.14bj 

where q = T +:T’ O ( T ~ ) ,  A, is the eigenvalue of the replicon eigenvector and A, and A b  
are the eigenvalues of the ‘anomalous’ eigenvectors and ‘breathing’ eigenvectors 
accordingly. 

For n = 0 and k -+ x equations (3.11) and (3.13) have the form 

A,(x l=q( l ) - -T-q2(X)  (3.15) 

For the free energy (equation (3.6)) the function q (x )  is 

13.16) 

x 1 =  2q(1). (3.176) q(1)  = T + q 2 ( l )  



Stability of Parisi’s solution 1343 

(Parisi 1980~).  Substituting equations (3.17) into equation (3.15) one finds 

(3.18) 

It may be interesting to note that for the approximate free energy (equation (3.6)) 
A , ( 1 )  is equal to zero, exactly. Solving equation (3.16), we obtain 

X I  s x  s 1 
o s x  < X I  

(3.19) 

So we obtain that for Parisi’s solution all eigenvalues (A,(x) and A,(x)) of the matrix 
Map,yv are non-negative and the stability condition (equation (2.12)) is satisfied up to 
the second order in 7 for T close to T,. 

7 + T 2  + t T 3  + o(T4) 
2 10 3 - 1  3 i 7 + 7  + j T  12x + o ( ~ ~ )  = 

4. Conclusions 

In the present paper we proved that the condition for stability of the replica-symmetry- 
breaking solution proposed by Parisi is determined by the inequality (2.12). This 
inequality is satisfied for T close to T,  up to the second order in T = 1 - T/T,. For 
the approximate free energy this inequality is satisfied at all orders in T.  To examine 
the stability of Parisi’s solution at low temperatures one has to solve the differential 
equations (2.16) and (2.17). 

We have shown that there are zero eigenvalues of the matrix Map,.,v of second 
derivatives. Other eigenvalues are positive. These results are correct to second order 
in T.  The breaking of the replica symmetry partially removes a degeneracy of the 
replicon and anomalous eigenvalues. There are two continuous branches of the 
eigenvalues of the matrix MOIp,YY. One of them is formed by the replicon eigenvalues 
and the other one is formed by the anomalous and breather eigenvalues. 

This paper presents further evidence that Parisi’s solution may be the correct one. 
However, there are important questions unsolved. For example, a question of great 
interest is whether the model contains massless modes in all orders in perturbation 
theory. 
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